

2016 Landed Mission

Concepts & Possibilities

Rich Zurek, Dave Beaty, Charles Budney, Frank Jordan September 18, 2008

Agenda

- □ Review the science discoveries that motivated the "existence proof" of the 2016 rover mission put forward by the Mars Strategic Science SAG and treated as a building block in the MATT-2 study
 - Recent discoveries
 - Lessons learned from MER operations
 - Findings of the ND-SAG which defined "minimum" requirements for a sample return cache
- □ Review (briefly!) some of the technical concept studies which illustrate emerging technical issues and capabilities
- □ This is background to a discussion of what a MEPAG SAG might do to further define a mission for the 2016 launch opportunity

MATT-2 Mission Scenarios

Option	2016	2018	2020#2	2022#2	2024	2026	Comments
2018a ^{#1}	MSR-O	MSR-L	MSO	NET	Scout	MPR	Funded if major discovery?
2018b ^{#1}	MSO	MSR-L	MSR-O	NET	Scout	MPR	Restarts climate record; trace gases
2018c ^{#1}	MPR	MSR-L	MSR-O	MSO	NET	Scout	Gap in climate record; telecom?
2020a	MPR	MSO	MSR-L	MSR-O	NET	Scout	MPR helps optimize MSR
2020b	MPR	Scout	MSR-L	MSR-O	MSO	NET	Gap in climate record, early Scout
2022a	MPR	MSO	NET	MSR-L	MSR-O	Scout	Early NET; MPR helps MSR
2022b	MSO	MPR	NET	MSR-L	MSR-O	Scout	Early NET, but 8 years between major landers (MSL to MPR)
2024a	MPR	MSO	NET	Scout	MSR-L	MSR-O	Early NET; 8 years between major landers; very late sample return

MSO = Mars Science Orbiter

MPR = Mars Science Prospector (MER or MSL class Rover with precision landing and sampling/caching capability)

MSR = Mars Sample Return Orbiter (MSR-O) and Lander/Rover/MAV (MSR-L)

NET = Mars Network Landers ("Netlander") mission

FOOTNOTES:

- #1 Requires early peak funding well above the guidelines; 2018b most affordable of these options
- #2 Celestial mechanics are most demanding in the 2020 and 2022 launch opportunities; arrival conditions (Mars atmospheric pressure, dust opacity) challenging after 2020

Preferred Scenario for given MSR-L Launch Opportunity

Assumptions for the 2016 Mission

□ From MATT-2: Launch at least a MER-class rover to a new site

 MER-class does not mean a MER clone, but is an indicator of lander capability in terms of mass, power, range and payload capability.

□ Mission as envisioned by MATT-2 has a dual science role:

- Stand-alone science conducted in situ at a new site
- Preparation of a sample cache meeting the requirements for a sample return mission (addressing both geochemical and astrobiological science questions--Astrobiology Strategy report; ND-SAG)

□ Technologies envisioned:

- Precision landing (~ 3km ellipse radius), which is desired for both science roles
- Coring is required for sample return; "ratting" is required for in situ science
- Sample encapsulation/preparation is required for sample return

□ Programmatic Considerations:

- Funding is tight for a 2016 mission
- A 2016 mission must be justifiable on the basis of its in situ science alone
- A 2016 landed mission should provide critical feed-forward to a possible MSR
- A rover mission in 2016 would help preserve the ability (e.g., EDL expertise) to do major landed missions on Mars, including MSR
- Ready to go beyond a "Follow the Water" theme to something new: Exploring habitable environments within the context of understanding Mars as a system

2016 Mission Synergy

In Situ Science at a new site

Characterize diverse site

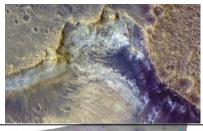
Sample Selection (including RAT)

> Site Selection

Precision Landing

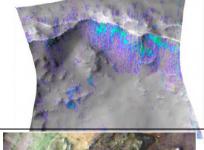
Sample packaging

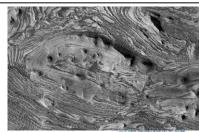
Caching for MSR & on-Earth Analysis


Coring

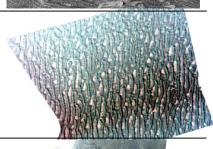
MEPAG MSS-SAG: Discoveries of New Terranes

Recent orbital observations (MGS, ODY, MEX, MRO) have revealed ≥ 8 terrane types with distinctive aqueous mineralogy, structure & stratigraphy

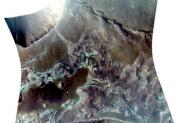

Noachian layered clays (type: Mawrth Vallis)


Noachian Meridianitype layered deposits (type: Terra Meridiani)***

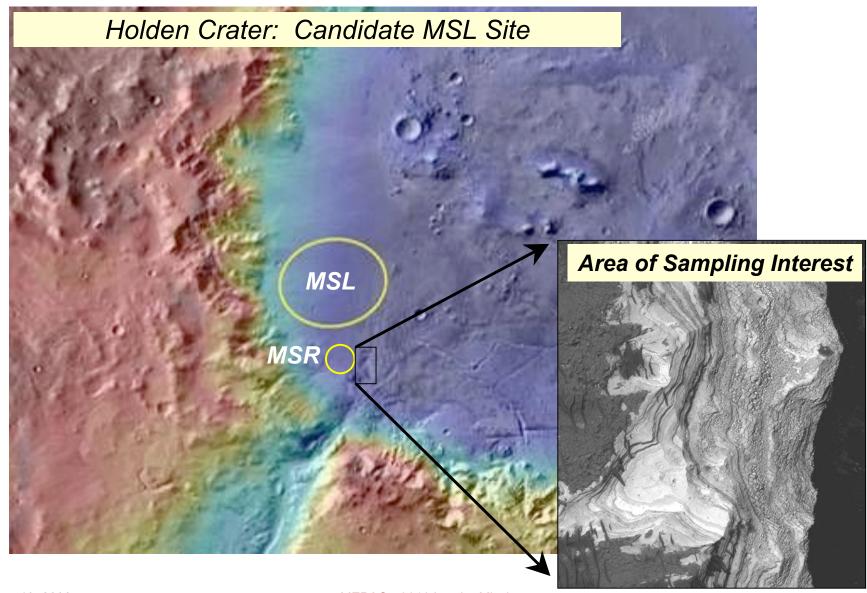
Deep Noachian phyllosilicates exposed in highland craters, chasma walls (type: Tyrrhena Terra)


Hesperian Vallestype layered deposits (type: Candor Chasma)

Noachian intra-crater fans with phyllosilicate-rich layers (type: Jezero Crater)


Amazonian gypsum deposits (type: Olympia Undae)

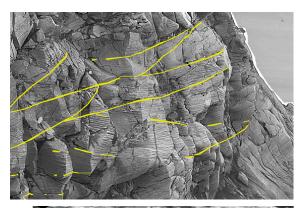
Noachian chloride salt deposits (type: Terra Sirenum)

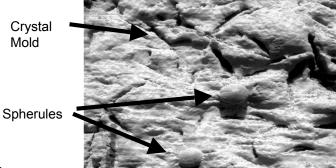

Thin Hesperian layered deposits with hydrated silica (type: Ophir Planum)

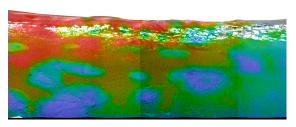
Precision Landing Benefit

Lessons from MER (1 of 2)

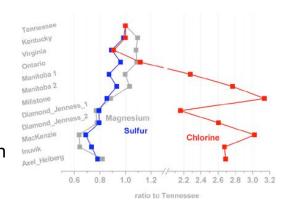
- Opportunity investigated the first orbital detection of a possible aqueous mineral - gray hematite
- □ Possible genetic mechanisms (from original TES discovery)
 - 1. Sedimentation from surface waters.
 - 2. Precipitation from hydrothermal fluids
 - 3. Alteration of basalts
- □ *In situ* measurements were essential to interpreting origin
 - None of the original hypotheses was correct
- #1 was closest (diagenesis of eolian sediments by groundwater, deposition and reworking by surface waters)
- □ 6 technical capabilities proved essential (next slide)


Lessons from MER (2 of 2)


Mold



- 1. Accessibility (precision landing + mobility) is critical to reach deposits of interest. Crossing a contact during an extended mission is like landing at two sites.
- 2. Panoramic imaging with sufficient resolution detects geologic units & characterizes structures
- 3. Spectral mapping shows mineral distribution and relates it to imaging results, to identify key sites for contact measurements



- 4. Microscopic imaging reveals textures needed to understand lithologies
- 5. An abrasion tool provides fresh surfaces for accurate elemental composition measurements
- 6. Elemental composition data show geochemical trends needed to understand depositional and alteration environments

MEPAG ND-SAG: Sample Selection & Documentation

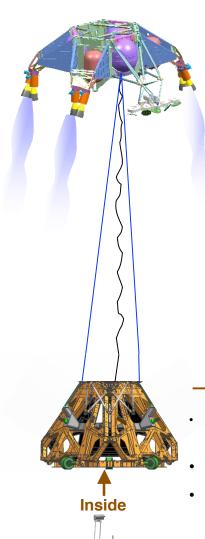
What is the minimum number of <u>measurement</u> types necessary to make effective sample selection decisions and to document the context of the samples collected?

Case A: New site (capabilities assumed by MATT for 2016 rover)

Case B: Revisit previously characterized site for SR

What is needed	Suggested measurement	Case A	Case B
Ability to locate samples	Color stereo imagery	YES	YES
Ability to determine fine rock textures (grain size, crystal morphology), detailed context	Microscopic imagery	YES	YES
Ability to differentiate rock types, effects of different natural processes	Mineralogy	YES	NO
Ability to differentiate rock types, effects of different natural processes	Bulk Elemental abundance	YES	NO
Ability to detect organic carbon	Organic carbon detection	YES	NO
Ability to remove weathered or dust-coated surface and see unweathered rock	Abrasion tool	YES	NO

September 18, 2008


2016 Mars Landed Mission Options

Case 0	Case 1	Case 2	Case 3 Reference	Case 6	Case 5	MSR
MER-Clone & Unguided MER-Based EDL	MER-Based Rover Guided MER-Based EDL	MER-Based Rover & MSL-Scaled EDL	MER-Based Rover & MSL-Based EDL	MER/MSL Hybrid Rover & MSL-Based EDL	MSL-Based Rover (RTG) & MSL-Based EDL	MSR-Lander & MSL-Scaled EDL

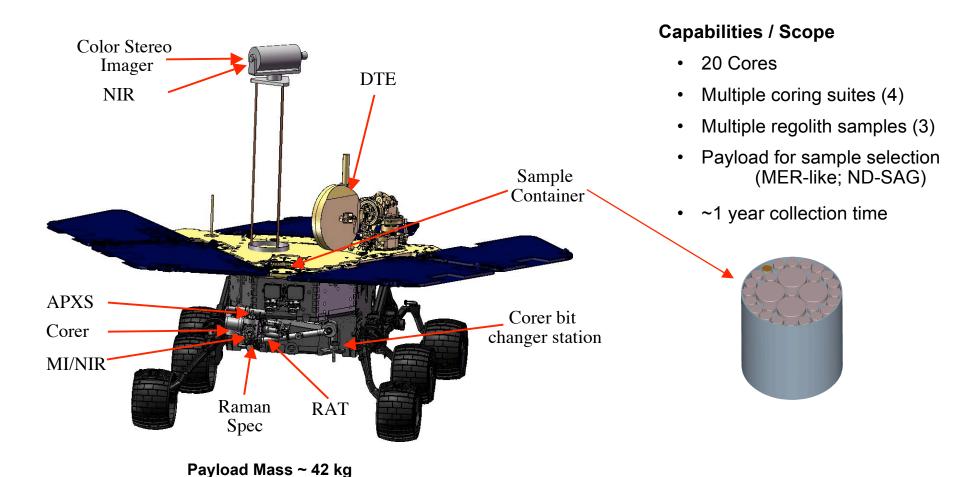
Two Lander Concepts for 2016

Common MSL Clone _____
Delivery System

Common science-advised caching payload

Reference

- 200-250 kg MER-derived solarpowered Rover
- Delivery on 200 kg platform
- Direct Rover feed forward (clone potential) to MSR

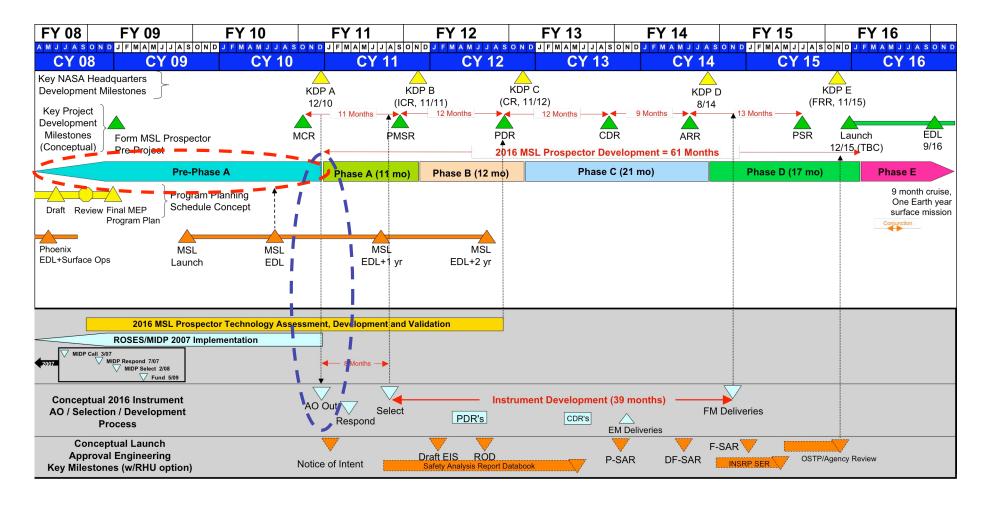

Alternative

- 300-400 kg MSL-derived solar-powered Rover
- Delivery on wheels (like MSL)
- More mass than feasible for MSR

Example Sample Collection, and Caching Payload with Site Characterization (ND SAG)

Rover Mass ~200 - 250 kg

Design Masses w.r.t. MER


Category	MER (as built)	2016 Rover Point-Design		
Science Instruments	4.5 kg	11 kg (4.3 kg C detector)		
Science Support	15.7 kg	31 kg		
Mast	10.4 kg	3.2 kg		
Arm (with turret)	4.6 kg	11.7 kg		
RAT	0.7 kg	0.6 kg		
Corer + bit changer	n.a.	7.8 kg		
Sample encapsulation & cache	n.a.	5.2 kg		
Bio-barrier	n.a.	2.6 kg		
Command & Data	12 kg	21 kg		
Power	18 kg	34 kg		
Structures & Mechanisms	100 kg	143 kg		
Rover Total	174 kg	250 kg		

2016 Mission Schedule (example)

5-Year Development

Science Issues for 2016 Mission

□ Science Goals

- What should be the science of a 2016 mission?
- MATT-2 (& MSS-SAG before it) advocated going to a new site known to have had aqueous activity (from orbital data) but different from terranes sampled in situ already
- In situ science would characterize the geologic history of the site, the role of water, and the
 potential for habitability
- Should there be additional goals or a different balance of goals?
 - Implications for in situ science instruments, site selection and rover capabilities

□ Site Selection

- What are the site requirements for the mission's in situ science and also for sample return science?
 - What are the precision landing requirements needed to get there?
 - How best to use existing orbital assets (ODY, MEX, MRO) to identify such sites?

□ Technology Feed-Forward

- How much feed-forward to MSR should be built into a 2016 mission
 - Should one put the 2016 mission on the critical path to MSR (i.e., MSR has only a fetch rover)?
 - Or do we always plan that MSR will always have its own sample-caching rover?
 - Should the 2016 rover be "clone-able" for inclusion on the MSR lander?
- How does one maintain the dual-purpose of the mission?
 - Is coring a capability that should be required for the in situ site science?
 - Planetary Protection: How much should be attempted on this mission?

MSS-SAG Mapping of Proposed Candidates

					2010	20	013-2016		2018-2020
Goal	Objective	Priority		Investigation	MSL	MSO (atmospheric)	Network	Mid-range Rover	MSR (assuming non-polar site)
- 10		HIGH	1	PRESENT STATE AND CYCLING OF WATER					
8		1	2	SEDIMENTARY PROCESSES AND EVOLUTION			(j
$\stackrel{\sim}{\sim}$			3	CALIBRATE CRATERING					
\ <u>\frac{1}{2}}</u>			4	IGNEOUS PROCESSES AND EVOLUTION					
Ī	ıst		5	SURFACE-ATM INTERACTIONS					
ᇫ	Crust		6	LARGE-SCALE CRUSTAL VERT STRUCTURE					
	ď		7	TECTONIC HISTORY OF CRUST					
<u>ত</u>	4		8	HYDROTHERMAL PROCESSES					
×			9	REGOLITH FORMATION AND MODIFICATION					
Ö		\forall	10	CRUSTAL MAGNETIZATION					
GEOLOGY/GEOPHYSICS		LOW	11	EFFECTS OF IMPACTS					
0	o	HIGH	1	STRUCTURE AND DYNAMICS OF INTERIOR					
GE	Interior		2	ORIGIN AND HISTORY OF MAGNETIC FIELD					
		\downarrow	3	CHEMICAL AND THERMAL EVOLUTION					
≡	œ.	LOW	4	PHOBOS/DEIMOS					
		HIGH	1	DUST - ENGINEERING EFFECTS					
				ATMOSPHERE (EDL/TAO)					
Z	A: Science Measurements		3	BIOHAZARDS				—	
0	Science		4	ISRU WATER					
F	is e		5	DUST TOXICITY ATMOSPHERIC ELECTRICITY					l
I ₹	S		7	FORWARD PLANETARY PROTECTION					
A	A: lea		8	RADIATION					
8			9	SURFACE TRAFFICABILITY					
7			10	DUST STORM METEOROLOGY					
Щ			1	AEROCAPTURE					
PREPARATATION	Εş		2	ISRU DEMOS					
	B: Eng/TI Demos		3	PINPOINT LANDING					
≥	E E		4	TELECOM INFRASTRUCTURE					
	9	1 O.R.	5	MATERIALS DEGRADATION					
		LOW	6	APPROACH NAVIGATION					

LEGEND	
Major contribution	
Significant contribution	
2013-2016 investigations not addressed by MSR	
lander	

Potential to extend *in situ* observation to classes of deposits not investigated previously

MSS-SAG Mapping of Proposed Candidates

					2010	20	013-2016		2018-2020
Goal	Objective	Priority		Investigation	MSL	MSO (atmospheric)	Network	Mid-range Rover	MSR (assuming non-polar site)
	ty	HIGH	1	CURRENT DISTRIBUTION OF WATER					
	iii		2	GEOLOGIC H2O HISTORY					
	A: Habitability	\downarrow	3	C,H,O,N,P, AND S - PHASES					
ш	Ha	LOW	4	POTENTIAL ENERGY SOURCES					
LIFE		HIGH	1	ORGANIC CARBON					
	B: Carbon		2	INORGANIC CARBON					
-		+	3	LINKS BETWEEN C AND H, O, N, P, S					
		LOW	4	REDUCED COMPOUNDS ON NEAR SURFACE					
		HIGH	1	COMPLEX ORGANICS					
	iţe		2	CHEMICAL AND/OR ISOTOPIC SIGNATURES					
	C: Life	\downarrow	3	MINEROLOGICAL SIGNATURES					
	0	LOW	4	CHEMICAL VARIATIONS REQUIRING LIFE					
	int	HIGH		WATER, CO2, AND DUST PROCESSES					
	A. Present	*	_	SEARCH FOR MICROCLIMATES					
ш	<u>a</u>	LOW		PHOTOCHEMICAL SPECIES				+	
CLIMATE	n	HIGH	1000	ISOTOPIC, NOBLE & TRACE GAS COMP.	ļ.				
	Ancient		1000000	RATES OF ESCAPE OF KEY SPECIES	1				
	An	\downarrow		ISOTOPIC, NOBLE, AND TRACE GAS EVOLUTION PHYS AND CHEM RECORDS		į.			
O	œ.	LOW	0.00	STRATIGRAPHIC RECORDPLD	J. J.				
=		HIGH		THERMAL & DYNAMICAL BEHAVIOR OF PBL					
	Safe ops		1.00	ATM. BEHAVIOR 0-80 KM	4.	_			
	S. S s/c o	\downarrow		ATM. MD 80-200 KM					
	C. 0	LOW		ATM. MD >200 KM					
		LUW	4	ATIVI. IVID >200 KIVI					

LEGEND

Major contribution
Significant contribution
2013-2016 investigations not addressed by MSR
lander

Potential to extend *in situ* observation to classes of deposits not investigated previously